УДК 621.438.002.2
Ю. С. Крессанов, А. Я. Качан, В. В. Чигиринский, А. Н. Бень

ВЛИЯНИЕ ПАРАМЕТРОВ ГОРЯЧЕГО ВЫДАВЛИВАНИЯ ЗАГОТОВОК РАБОЧИХ ЛОПАТОК КОМПРЕССОРА НА КАЧЕСТВО ИХ ИЗГОТОВЛЕНИЯ

В работе представлены основные результаты экспериментальных исследований влияния параметров горячего выдавливания заготовок лопаток на качество их изготовления.

Постановка проблемы и ее связь с практическими задачами

Изготовление заготовок рабочих лопаток (ЗЛ) компрессора методом горячего выдавливания под последующее холодное валязование должно обеспечивать низкую шероховатость поверхностей пера, так как после валязования в дальнейшем механическая обработка не производится.

Горячее выдавливание заготовок рабочих лопаток с развитым хвостовиком из нержавеющей стали и титановых сплавов производят в разъемных матрицах. Отличительной особенностью процесса является то, что заготовки перед выдавливанием покрывают гальванической медью, которая является дополнительной смазкой и исключает в сложных условиях деформации сваривающее основное материала с материалом инструмента [1].

Однако в производстве ЗЛ периодически возникает проблема, связанная с обеспечением требуемой геометрии и шероховатости поверхности пера (наличие рисок) и низкой стойкостью штампов.

Цель работы — определение влияния параметров горячего выдавливания заготовок рабочих лопаток из титанового сплава ВТ8 на качество их изготовления.

Содержание и результаты исследований

Исследования проводились при горячем выдавливании заготовок рабочих лопаток из титанового сплава ВТ8 для компрессора авиационного двигателя ТВЗ-117ВМА-СБМ1 на кривошинном одностоечном прессе усилием 1000 кН в разъемных штампах в соответствии с серийным технологическим процессом (рис.1-3).

При выдавливании ЗЛ по данной технологии периодически наблюдается образование продольных рисок на поверхности пера, что повышает ее шероховатость и не позволяет обеспечить качество изготовления лопаток при последующем холодном валязовании пера (рис. 4).

Так как процесс горячего выдавливания ЗЛ осуществляют при достаточно высокой температуре (890 °С) и для улучшения работы штампов нагревают до 150...200 °С, то в процессе выдавливания склонный к адгезии титановый сплав схватывается с материалом штампа. Частицы титанового сплава, налипающие на штамп в процессе выдавливания, имеют высокую твердость, вследствие их наклепа, и являются основной причиной образования рисок на поверхности пера ЗЛ.

В ходе выполнения исследований процесса горячего выдавливания рабочих лопаток из титанового сплава ВТ8 определялось влияние на качество изготовления температуры деформации,
Влияние температуры деформации

Исследования проводились на рабочих лопатках 12-й ступени компрессора авиационного двигателя ТВЗ-117ВМА-СБМ1 с толщиной медного покрытия ИЗ, предусмотренной технологическим процессом (9...12 мкм). Были исследованы 4 интервала нагрева ИЗ, находящиеся выше технологической температуры на 20, 40, 60 и 80 °C, то есть при температуре ИЗ 890, 910, 930 и 950 °C.

Критериями оценки каждого температурного интервала нагрева служило состояние поверхности ЗЛ, штампов и условия заполнения радиусных поверхностей хвостовиком лопатки. Оценка шероховатости поверхности ЗЛ производилась на основании действующего эталона, состояние поверхности штампов оценивалось количеством загибок его поверхности, геометрия хвостовика — по чертежу. Результаты исследований приведены в таблице 1.

Проведенные исследования (табл. 1) свидетельствуют о том, что повышение температуры нагрева исходных заготовок под выдавливание ухудшает качество полученных заготовок лопаток по всем оценочным критериям (качество поверхности, заковки по хвостовику, незаполнение радиусных поверхностей хвостовика). Малое количество исследованных при температуре 930 °C заготовок объясняется крайне неудовлетворительным состоянием заготовок лопаток (рис. 5, см. табл. 1). В связи с этим обстоятельством, выдавливание заготовок лопаток при температуре нагрева 950 °C в дальнейшем не производилось.

Исследования показывают, что повышение температуры нагрева заготовок перед выдавливанием приводит к резкому ухудшению их качества. Это связано с тем, что повышение температуры нагрева ИЗ приводит к существенному окислению медного покрытия и при выдавливании происходит непосредственный контакт материала нера лопатки с материалом штампа.

Следовательно, рабочей температурой горячего выдавливания, определяющей удовлетворительное качество получаемых ЗЛ (при покрытии ИЗ толщиной 9...12 мкм) является температура 830...870 °C.

Таблица 1 — Результаты исследования влияния температурных условий деформации на качество изготовления заготовок лопаток

<table>
<thead>
<tr>
<th>Температура нагрева заготовок, °C</th>
<th>Количество иссле-дываемых ЗЛ</th>
<th>Соответствие образцу по шероховатости</th>
<th>Незаполнение радиусной поверхности хвостовика</th>
<th>Несоответствие образцу по шероховатости</th>
<th>Заковки по хвостовику</th>
<th>% годных ЗЛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>890</td>
<td>1356</td>
<td>1176</td>
<td>79</td>
<td>97</td>
<td>2</td>
<td>86,2</td>
</tr>
<tr>
<td>910</td>
<td>1323</td>
<td>33</td>
<td>82</td>
<td>896</td>
<td>8</td>
<td>11,8</td>
</tr>
<tr>
<td>930</td>
<td>100</td>
<td>5</td>
<td>30</td>
<td>95</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>950</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Влияние толщины медного покрытия

В связи с появлением случаями получения неудовлетворительной шероховатости поверхностности пера на выдавленных ЗЛ (наличие рисок) исследовалось влияние толщины медного покрытия и способ его нанесения на качество изготовления. Исследования проводились на заготовках рабочих лопаток 7 ступени компрессора по 3-м градациям толщины медного покрытия, нанесенного гальваническим методом: 4...6 мкм (меньше принятого по технологии), 9...12 мкм (соответствующее технологии) и 20...25 мкм. Для прослеживания динамики образования рисок визуальному осмотру подвергалась каждая 5-я выдавленная ЗЛ. Установлено, что толщина медного покрытия в пределах 4...6 мкм приводит к образованию рисок уже на 5-й ЗЛ (рис. 6, а), 9...12 мкм медного покрытия – к образованию рисок на 40...50 ЗЛ (рис. 6, б), а толщина медного покрытия 20...25 мкм – к образованию рисок на 80...90 ЗЛ (рис. 6, в).

Опыт серийного изготовления ЗЛ подтверждает выводы проведенных исследований, так как попавшие в производство ИЗ с толщиной медного покрытия менее 6 мкм вызывали резкое ухудшение состояния поверхности пера ЗЛ.

Исследование влияния конструктивных особенностей матрицы и геометрии торца исходной заготовки на образование не только повышенной шероховатости пера выдавляемой ЗЛ, но и несоответствия в виде закова проводилось на ЗЛ 5 ступени компрессора указанного двигателя.

Анализ изготовленных методом послойного приближения к окончательному размеру ЗЛ путем постепенного увеличения длины выдавливаемого пера (рис. 7) показал, что в первоначальный момент происходит осадка цилиндра на выступающей части матрицы, образующей полочку хвостовика. При этом образующие цилиндрической заготовки еще не касаются стенок матрицы, и происходит дальнейшее увеличение налива, а к моменту касания цилиндрической заготовки стенок матрицы этот налив имеет максимальные размеры (рис. 8, а).

Заков

Рис. 5. Состояние поверхности заготовок лопаток при выдавливании при температуре 930 °C

Рис. 6. Состояние поверхности заготовок лопатки 7 ступени компрессора с различной толщиной медного покрытия:
а – 5-я лопатка с толщиной медного покрытия 4...6 мкм;
б – 50-я лопатка с толщиной медного покрытия 9...12 мкм;
в – 80-я лопатка с толщиной медного покрытия 20...25 мкм.

Рис. 7. Заготовки лопаток 5 ступени компрессора, выдавленные с постепенным увеличением длины пера.

В то время, когда выдавленная заготовка соотносится с плоскостями, образующими полочку хвостовика, происходит повышение образовавшейся складки на заготовке в перо лопатки (рис. 8, б). Образование указанного несоответствия происходит в виду конструктивных особенностей матрицы и применяемой для выдавливания ИЗ.

В связи с тем, что круглая заготовка помещается в контейнер матрицы с неравномерным зазором по боковому сторонам, максимальный из которых достигает 1,35 мм на сторону, она может случайно устанавливаться в контейнере как показано на рис. 9.

Рис. 8. Образование закова на заготовке лопатки 5 ступени компрессора:
а – в начальной стадии; б – в конечной стадии.
Технология производства и ремонта

Рис. 9. Возможные положения ИЗ в контейнере матрицы:
а — неблагоприятное положение; б — благоприятное положение.

Наличие скоса на дне контейнера и острый кромка на торце кольцевой заготовки также способствует образованию заков в первоначальный момент осадки прутка (рис. 9, а). Другое крайненое положение кольцевой заготовки в контейнере (рис. 9, б) является более благоприятным и не приводит к образованию заков, т.к. в этом случае выдавливаемый металл склонен сразу вовлечься в первую часть матрицы.

Так как положение контейнера является случайным и не может контролироваться рабочим, то в результате изготовления ЗЛ величина несоответствий по заковам достигает 2...6 %. Кроме того, возникновение несоответствий способствует неправильной калибровке трущихся поверхностей.

Следует также отметить, что на образование заков не оказывает существенного влияния колебание значений толщины покрытия и примененной смазки в пределах, установленных технологическим процессом, так как в процессе изготовления заготовок и лопаток анализируемой партии использовалось большое количество серийных штампов. Покрытий и смазки, а процесс несоответствия во всех случаях колебался в узком диапазоне.

Из данных таблицы 2 следует, что лопатки 5, 6 и 12 ступеней, на которых наблюдается повысшенное несоответствие по заковам, имеют наибольший зазор в полости контейнера, который составляет соответственно 1,36; 1,15 и 1,04 мм для участков до температуры штамповки ИЗ.

Таким образом, причиной образования заков при выдавливании ЗЛ 4...12 ступеней из титанового сплава BT-8 является сочетание двух неблагоприятных факторов: наличие острог кромки на используемой для выдавливания ИЗ, отклонение ее от продольной оси в контейнере матрицы ввиду наличия зазора и скоса по дну матрицы из-за конструктивных особенностей хвостовика лопатки.

Ввиду сложности уменьшения зазора ИЗ в матрице из-за условий укладки ее в штамп было проведено исследование влияния формы торца ИЗ на образование заков. Были испытаны ИЗ 5 ступеней с фаской 2x45° и радиусом R 3 (мм) по торцу. На партии по 50 шт. ИЗ с фаской и радиусом окружения показали полное отсутствие заков, что объясняется формой торца ИЗ. Такая форма торца ИЗ исключает снятие и заков кромки при случайном неблагоприятном ее положении в контейнере матрицы, так как в этом случае выдавливаемый металл склонен сразу вовлечься в первую часть матрицы (рис. 10).

Исследования, проведенные на 1000 штук ИЗ 6 ступеней компрессора с радиусом перехода торцевой поверхности и цилиндрической R 4+22 (мм), показали, что несоответствие по заковам полностью устранились, а шероховатость поверхности улучшилась более, чем в 2 раза. При этом следует отметить, что, несмотря на постоянства несоответствия, также полностью устраивалось (рис. 11), а количество заготовок (полировок) удаленных частиц титанового сплава уменьшилось в 4...5 раз (при ИЗ с острой кромкой {R 0,1...0,4}), полировок снова матрицы производилась через 200...250 выдавленных ЗЛ.

Таблица 2 — Анализ положения исходной заготовки в контейнере матрицы для различных ступеней заготовок лопаток.

<table>
<thead>
<tr>
<th>Номер ступени</th>
<th>Размер ИЗ, км</th>
<th>Размер контейнера матрицы, мм</th>
<th>Зазор между ИЗ и контейнером матрицы при температуре штамповки, мм</th>
<th>Количество, шт</th>
<th>Несоответствие, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>диаметр d, мм</td>
<td>длина l ± 0,5 мм</td>
<td>«а»</td>
<td>«б»</td>
<td>макс.</td>
</tr>
<tr>
<td>4</td>
<td>13,0</td>
<td>32,5</td>
<td>15,62</td>
<td>13,69</td>
<td>1,36</td>
</tr>
<tr>
<td>5</td>
<td>12,4</td>
<td>25,0</td>
<td>14,61</td>
<td>12,88</td>
<td>1,15</td>
</tr>
<tr>
<td>6</td>
<td>10,7</td>
<td>21,5</td>
<td>12,30</td>
<td>11,59</td>
<td>0,85</td>
</tr>
<tr>
<td>7</td>
<td>10,7</td>
<td>21,5</td>
<td>12,42</td>
<td>11,59</td>
<td>0,91</td>
</tr>
<tr>
<td>8</td>
<td>10,7</td>
<td>21,5</td>
<td>12,61</td>
<td>11,59</td>
<td>1,00</td>
</tr>
<tr>
<td>9 и 12</td>
<td>10,7</td>
<td>21,5</td>
<td>12,57</td>
<td>11,89</td>
<td>1,04</td>
</tr>
</tbody>
</table>

ISSN 1727-0219 Вестник двигателестроения № 2/2009 — 111 —
Технология производства и ремонта

Рис. 10. Схема неблагоприятного положения исходной заготовки в контейнере матрицы при различной форме пера:

а — серийная заготовка; б — с фаской по торцу 2°45'; в — с радиусом 3 мм

Рис. 11. Внешний вид заготовок лопатки 6 ступени компрессора, выплавленных из серийной заготовки (а) и заготовки с радиусом по торцу 84 (б)

Рис. 12. Заготовки лопаток 9 ступени, выплавленные со скоростью 48 м/м³ (а) и 80 м/м³ (б)

Таким образом, применение круглой заготовки с радиусом между торцем и цилиндрической поверхностью 4°12 (мм) позволяет устранить несоответствие по шлифам, уменьшить ручной зачисток в 2 раза и повысить стойкость штампов на 10 %.

Влияние скорости деформирования

Поверхностные повреждения определяли на одном и том же комплекте штампов при выдавливании ЗЛ 9 ступени в количестве п 200 штук на каждой выбранной скорости. Ввиду ограниченных технических возможностей выдавливание осуществлялось только на 2-х скоростях на прессе фирмы «Вайлартен» (Германия) с 40 ходами в мин и квадратичной прессе модели K2130 с 80 ходами в мин.

Исследования показали, что уменьшение скорости деформирования приводит к улучшению состояния поверхности пера ЗЛ и не вызывает другие нежелательные отклонения геометрии выдавленных ЗЛ (исчерпание пера, повреждение часослов в местах около хвостовика за счет уширения деформации, повреждение отверстий) (рис. 12).

Это связано с тем, что повышение скорости деформации вызывает увеличение скорости выдавливания, вызванное уменьшением времени проложения разупрочняющих процессов (рис. 13) [2].

Следовательно, выдавливание титанового сплава ВТ8 с меньшей скоростью приводит к более благоприятному течению металла и позволяет улучшить качество поверхности заготовок лопаток. Поэтому было проведено исследование по определению влияния вида смазки на процесс выдавливания.

Влияние вида смазки на процесс выдавливания

Оценка влияния смазки на состояние поверхности ЗЛ производилась как при смазке непосредственно ИЗ перед нагревом, так и при смазке матрицы.

В качестве смазки при горячем экструдировании ЗЛ из сплава ВТ8 применяли слой меди толщиной 6...15 микрон, наносившийся на ИЗ гальваническим способом. Для обеспечения сцепления меди с титаном предварительно производится никель-хлористая обработка, образующая на поверхности заготовки 1...2 микрона никеля.

Основной вывод смаэки состоит в разъединении скользящих поверхностей, которые при экструдировании являются заготовка и штамп. Недостатком применяемой в производстве смазки является зависимость ее смазывающей способности от толщины слоя меди и никеля и строгость соблюдения гальванического процесса.
Технология производства и ремонта

С целью подбора новой смазки, отвечающей поставленным требованиям к ЗЛ, был исследован целый ряд смазок ИЗ, которые должны также отвечать следующим условиям:
- технологичности нанесения на поверхность заготовки и ее удаление;
- низкой токсичности;
- высокороскошной смазывающей способности;
- способности выдерживать температуру до 950 °C в процессе нагрева заготовки в течение 5...15 минут;
- создавать равномерную жаростойкую пленку на поверхности ЗЛ, предотвращающую прилипание выделяемой ЗЛ к штампу и обеспечившую заполнение гранюры штампа.

В работе были опробованы следующие виды смазки для заготовок (табл. 3).
Смазки №№ 1...7 наносились на поверхность заготовок кисточкой или пульверизатором, а затем просушивались на воздухе в течение 2-х часов или в термощкафэ в течение 20-30 минут (смазка № 7). Критерием оценки пригодности каждой смазки являлась шероховатость поверхности, геометрические размеры получаемой детали и состояние поверхности штампа.

В результате испытания указанных смазок установлено, что только смазка № 5 обеспечила удовлетворительную шероховатость поверхности, но при этом некоторые ЗЛ имели заковы по ножке хвостовика со стороны корыта. Дополнительное опробование смазки № 5 показало, что она не обеспечивает требуемую шероховатость поверхности.

Смазка № 7 наносилась на предварительно омедненную ИЗ с толщиной медного покрытия 9-10 мкм. При этом отмечается ее плохая смачиваемость, а состояние поверхности не отличалось от чистого медного покрытия толщиной 9...15 мкм.

Стеклоэмаль ЭВТ-8 (№ 8) показала некоторое растрескивание пера ЗЛ (рис. 14) и при этом хвостовик имеет не гладкий и углам незаменение из-за скопления эмали в этих местах в матрице, кроме того, ее нанесение и удаление сопровождается значительным увеличением трудоемкости. Нагрев в смеси солей бария и натрия (рабочая температура расплава 680-1050 °C) показал, что поверхность пера ЗЛ аналогична покрытием эмалью ЭВТ-8. Наблюдаются лучшая заполнение углов хвостовика ЗЛ из-за меньшей вязкости покрытия.

Исследованные смазки не нашли применения в производстве из-за выявленных недостатков.
Вместе с исследованием смазок, наносимых на ИЗ, были испытаны смазки для штампов (табл. 4) в сравнении с используемой смазкой (графит меднокисерный (30%) и машиное масло (70 %)).
Все исследованные смазки толщиной покрытия неудовлетворительный результат по токсичности (№ 12) и по состоянию поверхности (№ 3).

Рис. 14. Заготовка лопаты 4 ступени компрессора, изготовленная с покрытием ЭВТ-8
Таблица 3 – Виды исследуемых смазок

<table>
<thead>
<tr>
<th>№№ смазки</th>
<th>Написание компонентов</th>
<th>Количество в частях</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Медь порошок</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Свинец "--"</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Электролит - натрий хлористый 44%</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Натрий углюксим</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>Магний углюксим</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Жидкое стекло + вода в соотношении 1:1</td>
<td>170</td>
</tr>
<tr>
<td>2</td>
<td>Графит</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Эпоксид</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Жидкое стекло + вода в соотношении 1:1</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>Нитрид бора</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Алмазный порошок</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Лак КО-08</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Борный нитрид</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Оксид алюминия</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Оксид меди</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Нитрид бора</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Медь порошок</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Лак КО-08</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Графит</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>Эпоксид</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Нитрид бора</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Алмазный порошок</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Жидкое стекло + вода в соотношении 1:1</td>
<td>170</td>
</tr>
<tr>
<td>6</td>
<td>Оксалин вазелин</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Алмазный порошок</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Эпоксид</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Жидкое стекло + вода в соотношении 1:1</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>Фторированный композит</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>Стойлесилен ЭВП-8</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>Парафин и соли щелочей:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Хлористый барий (BaCl2)</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Натрий хлористый (NaCl)</td>
<td>30</td>
</tr>
</tbody>
</table>

Таблица 4 – Смазки, наносимые на матрицу

<table>
<thead>
<tr>
<th>№№ смазки</th>
<th>Написание компонентов</th>
<th>Количество в частях</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Оливиновая висмутовая кислота</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Графит</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Циллированное масло</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>Парафин</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Триэтилентетраоксуксусная кислота</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Графит</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Циллированное масло</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>Алмазная пудра</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Нитрид бора</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Касторовое масло</td>
<td>75</td>
</tr>
</tbody>
</table>

Влияние материала матрицы

Одним из важных элементов получения требуемой шероховатости 3Л методом выдавливания является деформирующий инструмент. Известно, что при выдавливании механических характеристик деформирующего инструмента, тем выше его износостойкость и выше необходимая шероховатость поверхности выдавливаемой 3Л. Материалы для деформирования изготавливаются из сталей 4Х4ВМФС (Д122), которая после термообработки имеет твердость НРС 48...53. Работа матрицы с такой твердостью дает очень низкую стойкость, составляющую до 100 выдавленных 3Л. Поэтому рабочую поверхность матрицы для повышения твердости и износостойкости наносят мартенситоструктурированным слоем. После термообработки рабочая поверхность матрицы имеет твердость НПС 60...65, что увеличивает стойкость инструмента в 10 раз.

Исследования влияния толщины наплавки мартенситоструктурированного слоя 0,5 мм и 1,0...1,5 мм показали, что толщина наплавки 1,0...1,5 мм является приемлемой, так как наплавленный рабочий поясок в дальнейшем механически обрабатывается. При толщинах наплавки 0,5 мм обнаруживается прижог переходного зоны, которая имеет значительную низкую твердость, равную твердости основного металла матрицы (НРС 4852).

Влияние технологической наследственности

Наследственность полученной шероховатости поверхности (риски) на нервной части 3Л была исследована при изготовлении рабочих донаток методом холодного вальцовки. Для исследования были отобраны 3Л 6 и 9 ступеней компрессора с характерными рисками. Глубина риск и шероховательность поверхности царя 3Л и донаток до и после вальцовки измерялась на двухмикроскопе Линника. 3Л 6 ступени перед вальцованием имела глубину риск 0,054 мм, что соответствовало шероховатости поверхности Rₐ 12,5 мкм, а 9 ступени 0,025 мм и Rₐ 6,3 мкм.

3Л указанных ступеней исходной шероховатости (без механической обработки по церу) прошли калибровку методом вальцовки.

При этом на 3Л 6 ступени после вальцовки (калибровки) глубина риск составила 0,006 мм, что соответствует шероховатости Rₐ 0,8 мкм, а на 3Л 9 ступени — 0,008 мм и Rₐ 1,6 мкм. Затем после закалки, гравировки, и механической обработки хвостовика 3Л проходили 3 операции холодного вальцовки царя (калибровка, церовка и второе вальцование).

После проведения трех церков холодного вальцовки шероховатость поверхности цера окончательно прозвальцованных донаток стала соответствовать Rₐ 0,4 мкм. Таким образом, шеро-
хоновость лопаток 3Л не хуже $R_{y} = 12.5$ мкм (с промежуточными значениями) позволяет получать методом холодного вальцевания требуемую по нормативной конструкторской документации шероховатость лопаток компрессора из титанового сплава ВТ8. При этом необходимо отметить, что посредством риска на лопатках, вызывающем местной зачисткой абразивным кругом, не всегда удается в процессе вальцевания и является концентраторами напряжений, приходящим к образованию трещин. Такие поперечные риски недопустимы и должны быть удалены методом полирования. Кроме того, глубокая местная зачистка лопаток 3Л приводит к нарушению геометрии профиля, что при последующем холодном вальцевании вызывает несоответствие обжатий, как следствие, к получению «саблеобразности» лопаток.

Перспективы дальнейших исследований

Полученные результаты проведенных исследований по стойкости инструмента и повреждаемости поверхности при выдавливании 3Л компрессора из титанового сплава ВТ8 показывают, что перспективными являются исследования, направленные на улучшение износостойкости материала инструмента (например, применение вставок из твердого сплава в основной матрице), поиск других видов покрытия ИЗ и установлению новых термореакционных (например, скорости) и термоокислительных условий деформации, а также нагрева ИЗ в защищенном аргоне.

Заключение

1. Проведенные исследования показали, что наиболее эффективным средством от валирования титана при выдавливании является медное покрытие ИЗ толщиной 15...18 мкм, которая должна иметь округление одного торца радиусом $R = 2...4$ мм, что позволяет получать качественную поверхность 3Л, соответствующую требованиям холодного вальцевания лопаток. При этом число зачисток (полировок) матрицы уменьшается до 3...5 раз.

2. Уменьшение скорости выдавливания лучшает характер течения металла, и, как следствие, качество 3Л.

3. Образовавшиеся при горячем выдавливании 3Л продольные риски глубиной до 0,04 мм не оказывают влияния на шероховатость поверхности лопаток окончательно изготовленных рабочих лопаток компрессора из титанового сплава ВТ8.

Перечень ссылок

Поступила в редакцию 24.06.2009