МІНІСТЕРСТВО ОСВІТИ І НАУКИ,
МОЛОДІ ТА СПОРТУ УКРАЇНИ
Запорізький національний технічний університет

МЕТОДИЧНІ ВКАЗІВКИ
до виконання лабораторних робіт з дисципліни «Лінії передачі»
для студентів напряму підготовки 6.050903 «Телекомунікації» усіх
форм навчання

2013

Укладачі: доцент, к.т.н., В.П. Дмитренко
асист. К.М. Горпинич.

Рецензент: доцент, к.т.н., Б.М. Бондарєв.

Відповідальний за випуск: асист. К.М. Горпинич

Затверджено на засіданні кафедри «Радіотехніка та телекомунікації»
Протокол № 7
від 16 січня 2013р.
ЗМІСТ

ЗМІСТ ... 3
ВСТУП ... 5
1 ВИМІР ЕЛЕКТРИЧНИХ ПАРАМЕТРІВ КАБЕЛІВ ЗВ’ЯЗКУ НА СТАЛОМУ СТРУМІ ... 8
 1.1 Мета роботи.. 8
 1.2 Методичні вказівки по організації самостійної роботи студентів... 8
 1.2.1 Вимір електричних параметрів кабелів 9
 1.2.2 Розрахунок електричних параметрів кабелів 10
 1.3 Опис лабораторної установки.................................. 11
 1.4 Порядок виконання роботи та методичні вказівки по її виконанню... 12
 1.4.1 Порядок виконання роботи 12
 1.4.2 Вимір опору ізоляції.. 13
 1.4.3 Вимір опору шлейфу 13
 1.4.4 Виміромічної асиметрії жил.................................. 14
 1.4.5 Вимір ємності ... 14
 1.4.6 Обробка результатів вимірів 15
 1.5 Зміст звіту .. 16
 1.6 Контрольні запитання 16
2 ДОСЛІДЖЕННЯ ЕЛЕКТРИЧНИХ ПАРАМЕТРІВ КОАКСІАЛЬНИХ КАБЕЛІВ ЗВ’ЯЗКУ ІМПУЛЬСНИМ МЕТОДОМ ... 18
 2.1 Мета роботи .. 18
 2.2.1 Загальні відомості про електричні параметри коаксіальних кабелів .. 19
 2.2.2 Розрахунки електричних параметрів коаксіальних кабелів зв’язку .. 20
 2.3 Опис лабораторної установки.................................. 21
 2.4 Порядок виконання роботи й методичні вказівки по її виконанню... 22
 2.4.1 Порядок виконання роботи 22
 2.4.2 Визначення коефіцієнта вкорочення хвилі в кабелі зв’язку відомої довжини .. 23
 2.4.3 Визначення хвильового опору кабелю зв’язку 23
2.4.4 Визначення коефіцієнта відбиття ... 24
2.5 Зміст звіту.. 26
2.6 Контрольні питання ... 26
3 ВИВЧЕННЯ КОНСТРУКЦІЙ КABELІВ ЗВ’ЯЗКУ 27
3.1 Мета роботи.. 27
3.2 Методичні вказівки по організації самостійної роботи студентів... 27
3.3 Опис лабораторної установки .. 28
3.3.1 Вивчення конструктивних елементів кабелів зв’язку 29
3.3.2 Вивчення конструкцій кабелів зв’язку 29
3.3.3 Вивчення зразків кабельних арматур 30
3.4 Зміст звіту.. 30
3.5 Контрольні питання ... 30
4 ВИМІР ПОЗДОВЖНИХ ІЗОЛЮЦІЙНИХ ПАРАМЕТРІВ КABELІВ ЗВ’ЯЗКУ Й ВИЗНАЧЕННЯ МІСЬ УШКОДЖЕННЯ В ЛІНІЯХ ЗВ’ЯЗКУ НА СТАЛОМУ СТРУМІ ... 32
4.1 Мета роботи.. 32
4.2 Методичні вказівки по організації самостійної роботи студентів... 32
4.3 Опис лабораторного обладнання... 33
4.4 Порядок виконання роботи й методичні вказівки по її виконанню... 35
4.4.1 Порядок виконання роботи .. 35
4.4.2 Визначення місця ушкодження ізоляції методом простої петлі (метод Муррея) ... 35
4.4.3 Визначення місця ушкодження ізоляції методом подовженой петлі при великих опорах (метод Варлея))................................. 36
4.4.4 Визначення місця ушкодження ізоляції методом подовженой петлі при малому перехідному опорі .. 37
4.4.5 Визначення місця обриву жил пульсуючим струмом 38
4.4.6 Визначення місця обриву жил методом порівняння ємностей .. 38
4.5 Зміст звіту.. 39
4.6 Контрольні питання ... 40
ЛІТЕРАТУРА ... 42
ВСТУП

Зв’язок є самостійною галуззю народного господарства країни. Лінії зв’язку, що входять до складу мережі зв’язку, значною мірою визначають техніко-економічні показники мережі, якість і надійність зв’язку. Сучасним станом відбуваються якісні зміни в розвитку цієї галузі електrozв’язку – перехід на технології DSL та лінії зв’язку, що використовують в якості напрямних систем оптичні волокна, що дозволить у десятки і сотні разів збільшити обсяг інформації, переданої по лініях зв’язку.

Розрізняють два основних види ліній передачі [1-3]:
— лінії, де середовищем поширення електромагнітних хвиль (переносників) є оточуючий простір, це лінії з атмосферним каналом, або радіолінії (радіоканал); в таких лініях об’єм середовища поширення теоретично є необмеженим (на практиці обмежується діаграмою спрямованості антенних систем);
— лінії, де об’єм середовища поширення обмежується напрямною системою (кабель, хвилевід, оптичне волокно) – це лінії електrozв’язку.

Ці лінії не конкурують між собою, а доповнюють одну одну в сучасних телекомунікаційних мережах. Ефективність роботи ліній електrozв’язку значною мірою визначається якістю їх напрямних систем, їх властивостями та параметрами, залежністю характеристик ліній передачі від частоти, впливів на лінії внутрішніх і зовнішніх електромагнітних полів.

Лінії передачі в сучасних телекомунікаціях є найбільш складною та високозатратною їх частиною. Затрати на лінійно-кабельні споруди електрозв’язку сягають 70-80% від усіх затрат на будівництво та експлуатацію ліній і мереж зв’язку. Задачею ліній передачі є здійснення операції передавання різноманітних інформаційних сигналів, якими абоненти обмінюються між собою. Лінії передачі передають інформацію за допомогою переносників – електромагнітних коливань (електромагнітних хвиль – ЕМХ) різних частот; сучасним станом використовується майже весь діапазон частот ЕМХ – від низьких частот (тональні частоти – ТЧ) для передачі мовних сигналів абонентськими лініями до оптичного діапазону для передачі високошвидкісних цифрових потоків в транспортній
міжміській (магістральній) мережі.

На практиці для організації електров'язку застосовують кабелі симетричного, коаксіального та оптичного типів; дослідження експериментальної хвиляводної лінії електров'язку з використанням круглих хвиляводів (з хвилею типу Н₀₁) довели їх неперспективність для цих задач.

Ціллю лабораторного практикуму є закріплення теоретичного матеріалу, придбання практичних навичок у проведенні вимірів на лініях зв'язку, розвиток навичок у самостійній роботі із дослідженням матеріалом. Лабораторні роботи присвячені вивченню параметрів кабелів зв'язку, методики вимірів параметрів, визначенню місць ушкодження кабелів зв'язку.

Теми пропонованих лабораторних робіт не є повторенням лекційного курсу, а містять додатковий матеріал, що студент вивчає самостійно.

При підготовці до виконання лабораторної роботи студентові необхідно ознайомитися з відповідним теоретичним матеріалом, методами вимірів, які використовуються у виконуваній роботі, підготувати усні відповіді на контрольні питання, виконати індивідуальне розрахункове завдання, підготувати бланк звіту по лабораторній роботі.

У лабораторії студенти повинні зберігати порядок, дисципліну, дбайливо ставитися до лабораторного устаткування, дотримуватися правил техніки безпеки при роботі з електроустановками, правил роботи з вимірювальними приборами.

Перед виконанням роботи студент зобов'язаний здати допуск. При здачі допуску необхідно відповісти на запропоновані викладачем питання (із числа контрольних), представити розрахункове завдання, оформленний бланк для звіту. При підготовці до здачі допуску особливу увагу необхідно звернути на засвоєння методики вимірів, принципів, покладених в основу вимірів.

Звіти про лабораторні роботи оформляються на окремих аркушах відповідно до СПП 15-96. У звіті вказується найменування, ціль роботи, перелік приладів й устаткування, схеми вимірів. У звіті приводяться розрахунки відповідно до індивідуального завдання по самостійній роботі, результати обробки експериментальних даних, порівняння розрахункових та експериментальних даних, висновки по роботі.
Кожен студент представляє індивідуальний звіт. До захисту приймаються оформлені до вимог звіти. При захисті звіту студент повинен уміти пояснити отримані результати, причини відхилення розрахункових даних від експериментальних, відповісти на запропоновані викладачем питання.
1 ВИМІР ЕЛЕКТРИЧНИХ ПАРАМЕТРІВ КABELІВ ЗВ’ЯЗКУ НА СТАЛОМУ СТРУМІ

1.1 Мета роботи

Освоєння методики виміру електричних параметрів кабелів на сталому струмі. Такі виміри проводяться в процесі монтажу кабельних ділянок, а також є складовими при проведенні регламентних вимірів під час експлуатації.

Придбання практичних навичок по вимірах параметрів кабелів зв’язку, освоєння типових вимірювальних приладів й ознайомлення з нормами електричних параметрів кабелів зв’язку.

1.2 Методичні вказівки по організації самостійної роботи студентів

При підготовці до виконання роботи необхідно самостійно вивчити розділ «Електричні вимірювання», а також ознайомитись з розділом «Вимірювання на сталому струмі».

Приступаючи до виконання роботи, необхідно:
− знати призначення й обсяг електричних вимірів кабелів зв’язку на сталому струмі;
− знати устрій і призначення приладу ПКП-3М, правила роботи з ним;
− уміти вимірювати електричні параметри кабелів зв’язку на сталому струмі;
− виконати індивідуальне завдання з розрахунку робочої ємності й опору шлейфа для кabelю типу ТГ або МКС відповідно за табл. 1.1;
− підготувати бланк звіту зі схемами вимірів, поперечним перерізом вимірюваних кabelів і таблицею для результатів (табл. 1.2);
− підготувати усні відповіді на контрольні питання.

Об’єктом дослідження в лабораторній роботі є макет кабельних ланцюгів, що моделює 2 типи кabelів — магістральний (МКС-1×4×1,2) і міський (ТГ-10×2×0,4).
Таблиця 1.1 – Індивідуальні завдання по розрахунку робочої ємності та опору шлейфу кабелю

<table>
<thead>
<tr>
<th>Варіант</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип кабелю</td>
<td>ТГ</td>
<td>МКС</td>
<td>ТГ</td>
<td>МКС</td>
<td>ТГ</td>
<td>МКС</td>
<td>ТГ</td>
<td>МКС</td>
<td>ТГ</td>
<td>МКС</td>
<td>ТГ</td>
<td>МКС</td>
</tr>
<tr>
<td>Діаметр жили, мм</td>
<td>0,35</td>
<td>1,0</td>
<td>0,38</td>
<td>1,2</td>
<td>0,4</td>
<td>1,4</td>
<td>0,35</td>
<td>1,0</td>
<td>0,38</td>
<td>1,2</td>
<td>0,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Товщина ізоляції, мм</td>
<td>0,2</td>
<td>0,4</td>
<td>0,25</td>
<td>0,5</td>
<td>0,3</td>
<td>0,6</td>
<td>0,3</td>
<td>0,6</td>
<td>0,25</td>
<td>0,4</td>
<td>0,2</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Таблиця 1.2 – Дані вимірів й обробка результатів вимірювань

<table>
<thead>
<tr>
<th>Вимірювані величини</th>
<th>На довжину L км при t_{вим}</th>
<th>На 1 км при t=20°C</th>
<th>ДЕРЖСТАНДАРТ ТУ на 1 км при t=20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{вим а} ab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{вим а}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{вим б}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{шл}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.1 Вимір електричних параметрів кабелів

Вимір параметрів кабелю на сталому струмі – основний спосіб визначення відповідності нормам тих характеристик ліній, що найбільш піддаються змінам в процесі експлуатації – опору ізоляції, опору шлейфа, омічної асиметрії, ємності.

Електричні виміри кабельних ліній зв’язку проводяться з метою:
а) перевірки відповідності нормам електричних характеристик кабельних ліній зв’язку, прийнятих в експлуатацію;
б) визначення характеру й місця ушкодження кабелю;
в) перевірки відповідності нормам електричних характеристик діючих кабельних ліній зв’язку й виявлення ділянок, що не задовольняють нормам з метою попередження й запобігання ушкоджень;
г) перевірки якості зробленого ремонту.

Відповідно до цього, електричні виміри кабелів зв’язку підрозділяють на приймально-задавальні; періодичні (профілактичні); виміру по перевірці якості будівельних і ремонтних робіт; виміри, що
визначають характер і місце ушкодження.

На сталому струмі вимірюють:

- опір ізоляції кожної жили відносно всіх інших жил, з’єднаних з металевою оболонкою, а в кабелях з пластиковою оболонкою – відносно заземленого екranу;
- опір ізоляції екрану відносно землі;
- опір шлейфу жил;
- омічну асиметрію кола;
- робочу ємність кола та ємність окремих жил відносно землі;
- електричну міцність ізоляції.

1.2.2 Розрахунок електричних параметрів кабелів

Розрахунок очікуваних кілометричних значень опору шлейфу жил виконується за формулою:

\[R_{\text{ше}} = \alpha \cdot \rho \cdot \frac{2000}{S} , \]

de \(\alpha \) – коефіцієнт скрутки (\(\alpha = 1,01-1,03 \));
\(\rho \) – питомий опір (для міді \(\rho = 0,0176 \text{ Ом} \cdot \text{мм}^2/\text{м} \));
\(S \) – площа поперечного перерізу жили, \(\text{мм}^2 \).

Розрахунок очікуваних кілометричних значень робочної ємності симетричного кола виконується за формулою:

\[\hat{N}_i = \frac{\alpha \cdot \varepsilon_r \cdot 10^{-6}}{36 \ln \left(\frac{2a \cdot \Psi}{d} \right)} , \]

de \(\varepsilon_r \) – еквівалентна відносна діелектрична проникність ізоляції;
\(a \) – відстань між центрами жил пари, \(\text{мм} \);
\(\Psi \) – поправочний коефіцієнт, що характеризує близькість металевої оболонки й сусідніх дротів;
\(d \) – діаметр провідника (жили) без ізоляції, \(\text{мм} \).

Коефіцієнт \(\Psi_n \) для кабелів з парною скруткою розраховується за формулою:
де $d_н$ — діаметр парної групи, мм;
$д_1$ — діаметр провідника (жили) в ізоляції, мм;
a — відстань між центрами жил пари, мм.

Коефіцієнт $Ψ_λ$ для кабелів із зоряною скруткою розраховується за формулою:

$$Ψ_λ = \frac{(d_н + d_1 - d)^2 - a^2}{(d_н + d_1 - d)^2 + a^2},$$

де $d_н$ — діаметр зоряної пари, мм.

1.3 Опис лабораторної установки

До складу лабораторної установки входить макет кабельних ланцюгів і переносний кабельний прилад ПКП-3М.

Переносний кабельний прилад ПКП-3М призначений для вимірів параметрів кабельних ланцюгів на сталому струмі та визначення місця ушкодження на кабельних лініях зв’язку в процесі їхнього будівництва та експлуатації. Кабельний прилад дозволяє робити наступні виміри:

− вимір омічного опору в межах від 0,1 до 100000 Ом;
− вимір омічної асиметрії;
− вимір ємності в межах від 0,005 до 5 мкФ;
− вимір опору ізоляції в межах від 10 КОм до 300 МОм та від 300 МОм до 50 ГОм;
− визначення місць ушкодження різними методами залежно від характеру ушкодження.

Гальванометр, встановлений у приладі, служить одночасно індикатором нуля для мостової схеми й вимірювальним приладом зі шкалами, градуйованими в МОм, для безпосереднього відліку опору ізоляції від 10 КОм до 10 ГОм і ємності від 0,01 мкФ до 0,5 мкФ.

Перед включенням приладу в мережу змінного струму перемикач напруги із запобіжником треба установити в положення,
що відповідає напрузі мережі. Підключати прилад до лінії необхідно каліброваними дротами, що входять у комплект приладу. Всі з’єднання в схемі робити при відключенному від мережі приладі.

У процесі вимірів мостовими методами балансування починати при натисканні кнопки «Грубо». При відході показчика за межі шкали кнопку «Грубо» відпустити. Якщо світловий показчик мікроамперметра відхиляється від нуля на 2-3 мм, натиснути кнопку «Точно» і виконати остаточне балансування моста, при цьому світловий показчик гальванометра встановлюється на оцінку «0» шкали ємностей.

Після проведення вимірів перемикач живлення встановити в положення «откл».

Схему підключення приладу до макета наведено на рис. 1.1.

Рисунок 1.1 – Схема підключення приладу ПКП-3М до кабелю

1.4 Порядок виконання роботи та методичні вказівки по її виконанню

1.4.1 Порядок виконання роботи

1. Підготувати прилад ПКП-3М до роботи.
2. Зробити перевірку опору ізоляції кабелів МКСГ і ТГ між жилами й кожною жилою відносно землі.
3. Зробити перевірку опору шлейфа жил кабелю.
4. Зробити перевірку робочої ємності і ємності окремих жил.
1.4.2 Вимір опору ізоляції

Опір ізоляції між жилами, а також між жилою й землею вимірюється за схемою омметра. Для вимірів підключити досліджувані жили й землю, відповідно, до клем Л1, Л2, З. На протилежному кінці вимірювані жили ізолювати.

Встановити перемикач І в одне з трьох положень: Л1-З, Л2-З, Л1-Л2 залежно від того, між якими колами необхідно виміряти опір ізоляції.

Перемикач ІІ встановити в положення Р, перемикач ІІІ – в положення 0,1. Ввімкнути живлення. Коректором установити світловий показчик мікроамперметра на оцінку Ообщ шкали опорів. Натиснути кнопку “Точно” і зробити відлік за шкалою МΩ з урахуванням множника на перемикачі III. Якщо світловий показчик не установлюється в робочій частині шкали МΩ, перемикач III варто перемкнути в положення 1,10,100 до виходу показчика на робочу частину шкали. Величину вимірюваного опору прочитати по шкалі МΩ з урахуванням установленого множника на перемикачі III. Якщо світловий показчик показує опір менше 1 МΩ, величину вимірюваного опору необхідно уточнити вимірим за схемою мосту сталого струму.

1.4.3 Вимір опору шлейфу

Якщо у вимірюваній парі проводів (витій парі) на одному кінці з’єднати дві жили, то утворитись шлейф.

Опір шлейфа вимірюють за схемою мосту сталого струму.

Підключити вимірюваний шлейф до клем приладу Л1, Л2.
Встановити перемикач І у положення М1, перемикач ІІ – у положення Ш (шлейф), перемикач ІІІ – на множник, відповідно до очікуваної величини опору \(R_{шл} \). Ввімкнути живлення. Корректором установити світловий показчик мікроамперметра на оцінку «0» шкали ємностей. Зробити балансування мосту обертанням ручок перемикачів декад опорів. Якщо світловий показчик не встановлюється на оцінку «0», перемикач І перевести в положення М2.

Величину вимірюваного опору прочитати на перемикачах декад опорів з урахуванням множника на перемикачі ІІІ.

1.4.4 Вимір омічної асиметрії жил

Асиметрія жил (різниця опорів жил, які складають одну пару) з’являється через неякісний контакт жил у муфтах, боксі, коробках, кабельних ящиках.

Для виявлення та своєчасного усунення асиметрії вимірюють різницю опорів дротів (жил) пари.

Омічну асиметрію кола вимірюють за схемою врівноваженого мосту.

Підключити вимірювану пару до клем приладу Л1, Л2. На протилежному кінці жили закоротити й заземлити. Заземлити клему З приладу.

Перемикач І установити в положення М1, перемикач ІІ – у положення А (асиметрія), перемикач ІІІ – у положення Т. Ввімкнути живлення. Корректором установити світловий показчик мікроамперметра на оцінку «0» шкали ємностей. Зробити балансування мосту обертанням ручок перемикачів декад опорів. Якщо світловий показчик не встановлюється на оцінку «0», перемикач І перевести в положення М2. Величину вимірюваного опору асиметрії прочитати на ручках перемикачів декад опору.

1.4.5 Вимір ємності

Вимір ємності виконується баластним методом.

Ввімкнути живлення. Корректором установити світловий показчик мікроамперметра на оцінку «0» шкали ємності. Перемикач ІІ установити в положення З (ємність), перемикач ІІІ – у положення 0,01. Натиснути одночасно кнопки «Точно» й «Калибровка З».
Обертанням ручки «Калибровка 3» установити світловий показчик на оцінку «0.5» шкали «μF». Вимкнути живлення. Підключити вимірювані жили й землю відповідно до клем Л1, Л2, 3. Установити перемикач 1 в одно з положень Л1-3, Л2-3, Л1-Л2 залежно від того, між якими жилами потрібно виміряти ємність. Перемикач III встановити в положення 10.

Ввімкнути живлення. Натиснути кнопку «Точно» і зробити відлік «μF» за шкалою «μF». При малих відхиленнях світлового показника встановити перемикач III у положення 0,1; 0,01 для установки показника в зручному для відліку секторі шкали. Величину вимірюваної ємності прочитати на шкалі «μF» з обліком установленого на перемикачі III множника.

1.4.6 Обробка результатів вимірів

Результати вимірів приводяться до кілометричних значень із урахуванням температурних коефіцієнтів.

Перерахування опору шлейфа до температури t=20°C зробити за формулою:

$$R_{20} = \frac{R_t}{1 - \alpha_R \cdot (t^\circ - 20^\circ)} ,$$

de R_t – кілометричний опір при температурі t°C;

α_R – температурний коефіцієнт опору (для міді $\alpha_R = 0,004$).

Перерахування опору ізоляції до температури t=20°C зробити за формулою:

$$R_{20} = \frac{R_{20} \cdot R_{20}}{1 - \alpha_{R_{20}} \cdot (t^\circ - 20^\circ)} ,$$

de – кілометричний опір ізоляції при температурі t°C;

– температурний коефіцієнт опору ізоляції. Для кабельного паперу $= 0,06$, для поліетилену та стyroфлексу $= 0,001$.

Асиметрію опору жил у парі Δ визначити за формулою:
\[\Delta r = \frac{\Delta R \cdot 100\%}{R_0 \cdot \varepsilon}, \]
de \(\Delta R\) – асиметрія опору;
\(R_{шл}\) – опір шлейфу, Ом.

Значення обмірюваних електричних параметрів кабелю після перерахування до кілометричних значень для температури ґрунту \(t=20^\circ\) звітнано з розрахунковими й з нормами на електричні параметри кабелю, зробити висновки про придатність ділянки кабелю до експлуатації.

1.5 Зміст звіту

У звіті повинні бути наведені:
– макіяк поперечного перерізу вимірюваних кабелів з указаними номерами пар та жил;
– дані розрахунку величин опору шлейфу й робочої ємності кола;
– дані вимірів й обробки результатів за формою табл. 1.2
– висновок про придатність до експлуатації ділянки кабелю.

1.6 Контрольні запитання

1. Призначення, види й обсяг електричних вимірів кабелів зв’язку.
2. Електричні параметри кабелю зв’язку на сталому струмі.
3. Метод і схема виміру опору ізоляції кола.
4. Метод і схема виміру опору шлейфа з жил кабельного кола.
5. Метод і схема виміру ємності кола.
6. Метод і схема виміру мічної асиметрії.
7. Еквівалентна схема кабелю зв’язку.
8. Фізична сутність еквівалентної відносної діелектричної проникності кабелю.
9. Для чого використовують часткове діелектричне заповнення в кабелях електрозв’язку?
10. Порядок перерахування електричних параметрів кабелю до кілометричних значень для заданої температури ґрунту.
11. Норми електричних параметрів кабелів на сталому струмі.
12. При якому співвідношенні між первинними параметрами лінія зв’язку буде мати мінімально можливе затухання?
13. Які складові входять в формулу для визначення загальної сталої втрат лінії зв’язку?
2 ДОСЛІДЖЕННЯ ЕЛЕКТРИЧНИХ ПАРАМЕТРІВ КОАКСІАЛЬНИХ КАБЕЛІВ ЗВ’ЯЗКУ ІМПУЛЬСНИМ МЕТОДОМ

2.1 Мета роботи

Освоєння методів дослідження електричних параметрів коаксіальних кабелів зв’язку, а також неоднорідностей у них імпульсним методом.

Придбання практичних навичок по вимірах параметрів коаксіальних кабелів.

Приступаючи до виконання роботи, необхідно:

— знати призначення й обсяг електричних вимірів коаксіальних кабелів зв’язку;

— знати устрій та призначення приладу Р5-8/1, правила роботи з приладом;

— уміти вимірювати електричні параметри коаксіальних кабелів зв’язку імпульсним методом;

— виконати індивідуальні завдання (табл. 2.1) з розрахунку хвильового опору Z_x і коефіцієнта загасання α коаксіальної пари кабелю;

— підготувати бланк звіту зі схемами вимірів і таблицею для результатів вимірів (табл. 2.2);

— підготувати усні відповіді на контрольні питання.

Таблиця 2.1 – Індивідуальні завдання з розрахунку хвильового опору Z_x й коефіцієнту загасання α коаксіальної пари кабелю

<table>
<thead>
<tr>
<th>Варіант</th>
<th>Вариант</th>
</tr>
</thead>
<tbody>
<tr>
<td>d, мм</td>
<td>1,2</td>
<td>2,6</td>
<td>0,7</td>
<td>7</td>
<td>5</td>
<td>1,1</td>
<td>1,2</td>
<td>2,6</td>
<td>0,7</td>
<td>0,7</td>
<td>0,5</td>
</tr>
<tr>
<td>D, мм</td>
<td>4,6</td>
<td>9,4</td>
<td>2,9</td>
<td>27</td>
<td>18</td>
<td>4,0</td>
<td>4,6</td>
<td>9,4</td>
<td>2,9</td>
<td>2,7</td>
<td>0,8</td>
</tr>
<tr>
<td>ε_r</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
</tr>
<tr>
<td>f, МГц</td>
<td>1</td>
<td>1,5</td>
<td>1,3</td>
<td>2</td>
<td>3</td>
<td>2,5</td>
<td>2</td>
<td>0,3</td>
<td>0,8</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Тут d – діаметр суцільного внутрішнього провідника, мм;

D – внутрішній діаметр зовнішнього провідника, мм;

ε_r – відносна еквівалентна діелектрична проникність заповнення кабеля;
f – частота, МГц.
Об’єктом дослідження в лабораторній роботі є зразки коаксіальних кабелів.

Таблиця 2.2 – Дані вимірів електричних параметрів коаксіальних кабелів

<table>
<thead>
<tr>
<th>Вимірювані величини</th>
<th>Кабелі №1</th>
<th>№2</th>
<th>№3</th>
<th>№4</th>
<th>№5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α (f=100-200 МГц)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α (f=10-30 МГц)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Тут K_v – коефіцієнт вкорочення довжини хвилі в кабелі;
Z_x – хвилевий опір кабеля, Ом;
ρ – коефіцієнт відбиття від неоднорідностей в кабелі.

2.2.1 Загальні відомості про електричні параметри коаксіальних кабелів

Основним показником якості коаксіальної пари на змінному струмі є хвильовий опір, що представляє собою відношення напруги до струму в кожній точці пари, при погодженому навантаженні або при електрично довгій лінії. Розрізняють основний хвильовий опір, обмірюваний на кінцях будівельної довжини кабелю, і хвильовий опір внутрішніх неоднорідностей. Значення основного хвильового опору прийнято рівним 75 Ом на частоті 1 МГц для усіх типів магістральних кабелів. У реальних кабелях є відхилення від номінального значення хвильового опору. На заводах підбирають коаксіальні пари за кінцевим значенням їхнього хвильового опору. Весь діапазон значень хвильового опору поділяється на 5 груп. Припустимі відхилення хвильового опору від номінальної величини наведені, наприклад, в [4].

Внутрішні неоднорідності коаксіальної пари є наслідком відступу від розрахункових величин конструкції елементів пари й електричних параметрів кабельних матеріалів.
До конструктивних неоднорідностей, які можуть з’явитися при виготовленні пари, відносять відступи від заданих діаметрів внутрішніх і зовнішніх провідників, розмірів ізоляційних матеріалів, ексцентричності розташування провідників та інші. У процесі будівництва неоднорідності можуть з’явитися на вм’ятині кабелю, які з’являються при навантаженні, розвантаженні, транспортуванні, зберіганні, а також на стиках будівельних довжин від помилок, допущених при групуванні, перегинах кабелю при прокладці й монтажі, від неправильного розташування ізолюючих шайб у зростку, перекосу внутрішнього провідника щодо мідних напівмуфт при зрошуванні коаксіальної пари. Однією з причин може бути і погана пайка деталей при зрошуванні провідників пари. Неоднорідності, що з’являються внаслідок неправильного групування й порушення правил технології монтажу, називають стиковими неоднорідностями. Вони виявляються при вимірі хвильового опору на підсилювальній ділянці.

2.2.2 Розрахунки електричних параметрів коаксіальних кабелів зв’язку

В галузі зв’язку носієм інформації є модульований (або маніпульований) радіосигнал, переносником якого є ЕМХ. ЕМХ є формою існування змінного у часі електромагнітного поля (ЕМП), що характеризується векторами напруженності електричного \vec{E} та магнітного \vec{H} полів; зв’язок між останніми встановлюється рівняннями Максвела (RM). Для спрямовування (каналізації) ЕМХ в галузі електрозв’язку застосовують напрямні системи – лінії передачі (ЛП). Для ЛП вводять первинні (R, L, C, G) та вторинні (Z_x, $\gamma=\alpha+j\beta$) параметри. Фізичний зміст цих величин:

R – погонний опір (Ом/км) характеризує втрати в металевих (провідних) елементах ЛП;

L – погонна індуктивність (Ом/км) характеризує магнітну складову \vec{H} ЕМХ в ЛП;

C – погонна ємність (Ф/км) характеризує електричну складову \vec{E} ЕМХ в ЛП;

G – погонна провідність (См/км) характеризує втрати в діелектричному заповненні ЛП;

Z_x – хвильовий опір (Ом) ЛП; це той опір, який зустрічає ЕМХ
при поширенні вздовж однорідної ЛП (це хвильовий параметр і його не можна асоціювати з «омічним» опором R);

\(\gamma = \alpha + j \beta \) – комплексна стала поширення ЕМХ в ЛП;

\(\alpha = \alpha_m + \alpha_g \) – стала загасання в ЛП (\(\alpha_g \) – складова, що зумовлена втратами в діелектричних елементах, \(\alpha_m \) – теж саме, але в металевих (провідних) елементах).

Коаксіальні кабелі практично використовуються в спектрі частот від 60 кГц і вище, де \(R << \omega L \) й \(G << \omega C \). У цьому діапазоні частот хвильовий опір і коефіцієнт загасання (дБ) можна визначати за формулами:

\[
Z_x = \sqrt{\frac{L}{C}},
\]

\[
\alpha = \frac{1}{2} \left(R \cdot \sqrt{\frac{C}{L}} + G \cdot \sqrt{\frac{L}{C}} \right) \cdot 8,69 = \left(\frac{R}{2 \cdot Z_x} + \frac{G \cdot Z_x}{2} \right) \cdot 8,69.
\]

Якщо первинні параметри передачі \(R, L, C, G \) виразити через конструктивні параметри \(d, D \) і параметри ізоляції кабелю \(\varepsilon_r, \tan \delta \), то розрахункові співвідношення приймуть вид:

\[
Z_x = \frac{60}{\sqrt{\varepsilon_r}} \cdot \ln \frac{D}{d},
\]

\[
\alpha = \left(\frac{2,6 \sqrt{f \cdot \varepsilon_r}}{\ln \left(\frac{D}{d} \right)} \right) \cdot \left(\frac{1}{D} + \frac{1}{d} \right) \cdot 10^{-3} + 9,08 \cdot f \cdot \sqrt{\varepsilon_r} \cdot \tan \delta \cdot 10^{-5},
\]

де \(d \) – діаметр внутрішнього провідника коаксіальної пари, мм;
\(D \) – внутрішній діаметр зовнішнього провідника коаксіальної пари, мм;
\(f \) – частота, Гц;
\(\varepsilon_r \) – відносна еквівалентна діелектрична проникність ізоляції;
\(\tan \delta \) – тангенс кута діелектричних втрат ізоляції.

2.3 Опис лабораторної установки

До складу лабораторної установки входять комплект зразків
коаксіальних кабелів зв’язку і вимірник неоднорідностей кабелів Р5-8/1. Останній призначений для виміру відстані (часової затримки) до зосередженої неоднорідності хвильового опору, виміру коефіцієнта відбиття (відношення амплітуд відбитого й зондувального імпульсів), виміру довжини кабелю, визначення характеру ушкодження коаксіальних кабелів, коефіцієнта вкорочення хвилі у кabeli, хвильового опору кabelю, коефіцієнта загасання кабелю.

Всі виміри виконуються на узгоджений по обидва боки лінії. Щоб уникнути виходу приладу з ладу, необхідно попередньо розрядити лінію, замкнувши жилі між собою й на земляну шину.

Схему підключення приладу до досліджуваного кабелю наведено на рис. 2.1.

Рисунок 2.1 – Схема підключення приладу до досліджуваного кабелю

2.4 Порядок виконання роботи й методичні вказівки по її виконанню

2.4.1 Порядок виконання роботи

1. Виміряти коефіцієнт укорочення Кв хвилі в кабелі зв’язку заданої довжини.
2. Виміряти хвильовий опір Zх кабелю зв’язку.
3. Виміряти коефіцієнт відбиття \(\rho \) від наявних у кабелі неоднорідностей.

4. Виміряти коефіцієнт загасання \(\alpha \) заданого кабелю на частотах 100-200 МГц, 10-30 МГц, 2-5 МГц.

5. Зрівняти розрахункові значення хвильового опору й коефіцієнта загасання кабелю з результатами вимірів.

6. Дати обґрунтований висновок про придатність кабелів зв’язку до експлуатації.

2.4.2 Визначення коефіцієнта вкорочення хвилі в кабелі зв’язку відомої довжини

Установити ручкою «УКОРОЧЕНИЕ» показання шкали «УКОРОЧЕНИЕ» рівне «1», ручку «РАССТОЯНИЕ» установити в положення «ПРО». Вибрати діапазон виміру, що відповідає відомій довжині досліджуваного кabelю. Підключити до розніму «ВЫХОД-ВХОД» основного блоку приладу сполучний кабель зі сполучним пристроєм. Установити початок відліку відстані від кінця сполучного кабелю.

Підключити до сполучного кабелю досліджуваний кабель. Установити ручку «РАССТОЯНИЕ» у положення, що відповідає відомій довжині досліджуваного кабелю. Установити максимальне відхилення стрілки індикатора «КОЭФФИЦИЕНТ ОТРАЖЕНИЯ» обертанням ручки «УКОРОЧЕНИЕ» вправо.

Зробити відлік коефіцієнта вкорочення хвилі в кабелі \(K_v \) за шкалою «УКОРОЧЕНИЕ». Точність відліку коефіцієнта вкорочення хвилі визначається при цьому точністю, з якою була встановлена геометрична довжина кабелю.

2.4.3 Визначення хвильового опору кабелю зв’язку

Якщо в досліджуваному кабелі є неоднорідності, то значення хвильового опору (75 Ом) треба відкоригувати за формулою:

\[
Z_x = \frac{1 + \rho}{1 - \rho} \cdot 75,
\]
де \(\rho \) – коефіцієнт відбиття, відрахований за індикатором «КОЭФФИЦИЕНТ ОТРАЖЕНИЯ».

2.4.4 Визначення коефіцієнта відбиття

Підключити до розніму «ВЫХОД-ВХОД» основного блоку приладу сполучний кабель зі сполучним пристроєм. Установити ручку «УКОРОЧЕНИЕ» у положення, що відповідає значенню коефіцієнта вкорочення хвилі для даного типу кабелю. Вибрати діапазон виміру й тривалість зондувального імпульсу залежно від необхідної розв’язної здатності по довжині неоднорідності: зондувальний імпульс 5 нс має фронт не більше 2 нс, при цьому роздільна здатність 20 см; зондувальний імпульс 30 нс має фронт не більше 5 нс, при цьому роздільна здатність – 50 см. Установити обертанням ручки «УСТ. ОТСЧЕТА» із крайнього лівого положення перше максимальне показання індикатора. Довести ручкою «УСИЛЕНИЕ» показання індикатора до +1.

Підключити до сполучного кабелю випробуваний кабель. Повернення стрілки індикатора в нульове положення буде свідчити про узгодження вхідного опору приладу й хвильового опору випробуваного кабелю. При випробуванні кабелів із хвильовим опором, відміним від 75 Ом, необхідно зробити регулювання чутливості індикатора ручкою «УСИЛЕНИЕ» для компенсації часткового відбиття зондувального імпульсу в місці підключення випробуваного кабелю до сполучного кабелю. Для цього після підключення випробуваного кабелю необхідно збільшити показання індикатора «КОЭФФИЦИЕНТ ОТРАЖЕНИЯ» ручкою посилення в \(n \) раз. Коефіцієнт регулювання \(n \) визначається за формулою:

\[
n = \frac{75 + Z_x}{300 \cdot Z_x},
\]

де \(Z_x \) – хвильовий опір випробуваного кабелю.

Зробити пошук неоднорідності хвильового опору обертанням ручки «РАССТОЯНИЕ» вправо по максимальному показанню індикатора. Для виявлення незначної зміни хвильового опору кабелю варто збільшити чутливість індикатора ручкою «МНОЖИТЕЛЬ».
Зробити відлік за індикатором «КОЕФФІЦІЕНТ ОТРАЖЕННЯ». Коефіцієнт відбиття визначається за формулою:

\[\rho = \rho_n \cdot m \cdot k \]

de \(\rho_n \) – показання індикатора «КОЕФФІЦІЕНТ ОТРАЖЕННЯ»;

\(m \) – положення ручки «МНОЖИТЕЛЬ»;

\(k \) – поправочний коефіцієнт, що враховує загасання зондувального імпульсу в кабелі.

Коефіцієнт \(k \) можна визначати зі співвідношенням:

\[\lg k = \frac{\alpha \cdot l}{10} \]

де \(\alpha \) – коефіцієнт загасання в кабелі, дБ/м;

\(l \) – відстань до неоднорідності, м.

Установити органи керування у вихідне положення. Підключити до розніму «ВЫХОД-ВХОД» приладу сполучний кабель зі сполучним пристроєм. Вибрати необхідний діапазон виміру й тривалість зондувального імпульсу. Установити початок відліку відстані від кінця сполучного кабелю.

Підключити досліджуваний кабель до сполучного кабелю. У випадку, якщо випробуваний кабель має хвильовий опір, відмінній від 75 Ом, зробити компенсацію втрат у місці з’єднання. Зробити вимір відношення амплітуд відбитого й зондувального імпульсу наприкінці кабелю, що визначається без обліку загасання за індикатором «КОЕФФІЦІЕНТ ОТРАЖЕННЯ», при цьому ручка «МНОЖИТЕЛЬ» обов’язково повинна перебувати в положенні 1. Визначити величину загасання кабелю (в дБ/м) за формулою:

\[\alpha = \frac{10 \cdot \lg \left(\frac{1}{\rho} \right)}{l} \]

де \(\rho \) – відношення амплітуд відбитого й зондувального імпульсів;

\(l \) – довжина досліджуваного кабелю, м.
2.5 Зміст звіту

У звіті повинні бути наведені:
− дані розрахунку величин хвильового опору й коефіцієнтів загасання кабелів;
− дані вимірів електричних параметрів коаксіальних кабелів;
− висновок з обґрунтуванням про придатність коаксіальних кабелів зв’язку.

2.6 Контрольні питання

1. Імпульсний метод дослідження електричних параметрів і неоднорідностей у кабелях зв’язку.
2. Принцип дії імпульсного приладу за функціональною схемою.
3. Коефіцієнт укорочення хвилі в кабелі та його визначення.
4. Хвильовий опір кабелю зв’язку та його визначення.
5. Коефіцієнт відбиття від неоднорідностей кабелю зв’язку та його визначення.
6. Коефіцієнт загасання кабелю зв’язку та його визначення.
7. Для чого застосовують групування будівельних довжин кабелю електрозв’язку?
8. За якими параметрами виконується групування в коаксіальних та симетричних кабелях?
9. Різновиди неоднорідностей будівельної довжини кабелю зв’язку.
10. Різновиди неоднорідностей підсилювальної довжини кабелю зв’язку.
11. Фізичні причини появи зустрічного та супутного потоків в лінії зв’язку з неоднорідностями.
12. Вплив зустрічного та супутного потоків на роботу лінії зв’язку.
З ВИВЧЕННЯ КОНСТРУКЦІЙ КABELІВ ЗВ’ЯЗКУ

3.1 Мета роботи

Вивчення конструктивних елементів кабелю зв’язку, кабельних матеріалів, конструкцій міжміських кабелів міської й сільської телефонної мережі, маркування кабелів зв’язку, кабельна арматура.

3.2 Методичні вказівки по організації самостійної роботи студентів

При підготовці до виконання необхідно вивчити розділ «Кабельні лінії зв’язку». Звернути увагу на класифікацію й маркування кабелів зв’язку, будову осердя, призначення конструктивних елементів кабелів зв’язку, ознайомитися з матеріалами, з яких виготовляються кабелі.

Приступаючи до виконання лабораторної роботи, необхідно:
− знати принципи класифікації кабелів зв’язку, областю їх використання, умови прокладки;
− знати маркування кабелів зв’язку;
− уміти по конструкції визначати тип (марку) кабелю зв’язку;
− підготувати бланк звіту;
− підготувати відповіді на контрольні питання.

Сучасні кабелі зв’язку класифікуються за наступними ознаками: призначенню, області застосування, умовам прокладки й експлуатації, спектру передаваних частот, конструкції, матеріалу й форми ізоляції, системи скрутки, виду захисних покривів.

Маркування або система умовних позначок кабелів відбиває основні класифікаційні ознаки й конструктивні особливості кабелю за допомогою букв і цифр. У загальному випадку марка кабелю відбиває такі фактори: область застосування кабелю, матеріал ізоляції кабелю, тип броньових та захисних покривів, будова осердя, діаметр струмопровідних жил.

У загальному випадку марку кабелю можна представити наступним записом:

123456×n×m×d
Позиції 1, 2, 3 позначають тип кабелю:
КМ – коаксіальний магістральний (позиція 3 не використовується);
МК – симетричний магістральний (позиція 3 не використовується);
МКТ – малогабаритний коаксіальний телефонно-телевізійний;
Т (ТПП, ТПВ) – телефонний кабель.
Позиція 4 позначає тип ізоляції:
С – стирофлексна;
П – поліетиленова;
В – вінілова (полівінілхлоридна).
Паперово-кордельна ізоляція літерного позначення не має.
Позиція 5 позначає тип захисної оболонки:
С – сталева;
А – алюмінієва;
Л – поліетиленова;
В – полівінілхлоридна.
Свинцева оболонка літерного позначення не має. Виключення становить кабель МКТ, у якому свинцева оболонка маркується буквою З, а сталева не позначається.
У позиції 6 може стояти буква Ш з індексом «п» або «в», що позначає наявність поліетиленового або полівінілхлоридного шлангу. Таке покриття обов’язково для кабелів з алюмінієвими оболонками.
Об’єктом дослідження є зразки кабелів зв’язку й кабельної арматури.

3.3 Опис лабораторної установки

До складу устаткування входять зразки різних типів кабелів: магістральних, зонових, міських, підводних, оптичних, а також кабельні бокси й кабельні муфти; мікроскоп і вимірювальні інструменти; мікрометр, штангенциркуль.
3.3.1 Вивчення конструктивних елементів кабелів зв’язку

Основними конструктивними елементами кабелів зв’язку є: струмопровідні ізольовані жили в симетричних кабелях, коаксіальні пари в коаксіальних кабелях, оптичне волокно в оптичних кабелях, захисні оболонки й бронепокрови. У звіті необхідно навести ескізи усіх перерахованих вище елементів із вказівкою всіх розмірів і матеріалів. Для симетричного кабелю приводяться ескізи ізольованих жил із суцільною ізоляцією й з паперово-кордельною або стирофлексно-кордельною ізоляцією. Виміряти товщину провідників, ізоляції, діаметр корделя, діаметр оптичного волокна, діаметр оптичного волокна в захисній оболонці. Виміряти розміри поясної ізоляції, екрану, захисної оболонки, броні із плоских стрічок та броні із круглих дротів.

3.3.2 Вивчення конструкцій кабелів зв’язку

Вивчити конструкцію запропонованих зразків міжміських, зонових, міських, оптичних кабелів зв’язку, визначити тип (марку кабелю), область застосування, способ прокладки, будову осерда. Привести ескіз поперечного перерізу запропонованих зразків кабелів зв’язку, указати всі конструктивні елементи, виміряти діаметр кожного зразку. Для кожного зразку визначити також матеріали захисної оболонки, ємність кабелю, тип ізоляції струмопровідних жил. Результати роботи представити у вигляді таблиці (див.табл.3.1):

<table>
<thead>
<tr>
<th>Номер кабелю</th>
<th>Марка кабелю</th>
<th>Спосіб прокладки</th>
<th>Область застосування</th>
<th>Струмопровідні жили</th>
<th>Будова осерда</th>
<th>Матеріал оболонки, товщина</th>
<th>Захисний покрив</th>
<th>Тип броні</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ізоляція</td>
<td>Скрутка</td>
<td>Матеріал і діаметр</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.3 Вивчення зразків кабельних арматур

Ознайомитися з конструкцією запропонованих зразків сполучних кабельних муфт і кабельних боксів. Привести ескізи запропонованих зразків кабельних арматур із вказівкою габаритних розмірів. Визначити призначення запропонованих зразків кабельних арматур.

3.4 Зміст звіту

У звіті повинні бути наведені:
– ескізи поперечного перерізу всіх досліджених різновидів кабелів;
– ескізи всіх конструктивних елементів досліджених кабелів зв’язку із вказівкою розмірів і матеріалів;
– ескізи досліджених кабельних арматур з вказівкою їх призначення та особливостей використання.

3.5 Контрольні питання

1. Особливості, структура осердя та маркування кабелів магістрального типу.
2. Особливості, структура осердя та маркування кабелів зонового типу.
3. Особливості, структура осердя та маркування кабелів сільського типу.
4. Різновиди оболонок кабелів електрозв’язку.
5. Різновиди бронепокривів кабелів електрозв’язку.
6. Різновиди систем захисного покриття кабелів.
7. Особливості кабелів для підводного прокладання.
8. Різновиди групоутворення в кабелях симетричного типу.
Приклади.
9. Різновиди систем утворення осердя в кабелях симетричного типу. Приклади.
10. З якою метою використовується часткове діелектричне заповнення? Які його різновиди?
11. З якою метою використовують сполучні кабельні муфти? Які
є різновиди кабельних муфт?

12. З якою метою використовують кабельні бокси? Які існують їх різновиди?

13. Які існують різновиди кабельної арматури?

14. За якими ознаками кабель марки КМГ-4 відрізняється від кабеля марки КМБ-4?

15. За якими ознаками кабель марки ТПП відрізняється від кабеля марки ТПВ?

16. За яких умов прокладання треба застосовувати кабель марки КМК-4?
4 ВИМІР ПОЗДОВЖНИХ ГЕОМЕТРИЧНИХ ПАРАМЕТРІВ КАБЕЛІВ ЗВ’ЯЗУ Й ВИЗНАЧЕННЯ МІСЬЦЬ УШКОДЖЕННЯ В ЛІНІЯХ ЗВ’ЯЗУ НА СТАЛОМУ СТРУМІ

4.1 Мета роботи

Освоєння методів визначення місць ушкодження ізоляції ж обриву жил кабелю на лініях зв’язу, придбання практичних навичок по вимірах на лініях зв’язу й освоєння типових вимірювальних приладів.

4.2 Методичні вказівки по організації самостійної роботи студентів

При підготовці до виконання лабораторної роботи необхідно самостійно вивчити розділ «Електричні виміри», розділ «Визначення місця ушкодження». Ознайомитися з найбільш поширеними ушкодженнями при експлуатації кабельних ліній зв’язку. У процесі підготовки до виконання роботи необхідно звернути увагу на принцип дії електричного вимірювального мосту, методи виміру опору ізоляції, перехідного опору, емності провідника стосовно землі.

Приступаючи до виконання роботи, необхідно:
– знати методи визначення відстані до місця ушкодження ізоляції при різних перехідних опорах;
– знати методи визначення відстані до місця обриву жил;
– уміти визначати жилу з неушкодженою ізоляцією;
– уміти визначати цілу жилу (без обриву);
– уміти проводити виміри приладом ПКП-3М;
– уміти розраховувати в результатами вимірів;
– підготувати бланк звіту (табл.4.1, 4.2);
– підготувати усні відповіді на контрольні питання.

Об’єктом дослідження є макети кабельних ланцюгів кабелів типу ТГ і МКС, що моделюють різні ушкодження.

За допомогою приладу ПКП-3М можна визначати найпоширеніші ушкодження кабельних ланцюгів, а саме: ушкодження ізоляції, обрив жили. Ушкодження ізоляції може мати кілька
різновидів, які характеризуються: наявністю або відсутністю справних жил, рівністю або розходженням опорів жил, величиною опору ізоляції щодо землі (перехідним опором). Зміна перехідних опорів та їхніх відносин у широких межах, численні комбінації різних умов привели до того, що для визначення місця ушкодження ізоляції жил кабелю зв’язку розроблено кілька десятків методів вимірів. Більшість із них використовують мостові схеми з постійним або перемінним відношенням плечей.

Для визначення характеру ушкодження необхідно виміряти опір ізоляції відносно землі. Ці виміри дозволяють установити наявність справних жил у кабелі й величини перехідних опорів жил з ушкодженою ізоляцією, вибрати метод для визначення відстані до місця ушкодження.

Якщо при визначені характеру ушкодження кабельних ланцюгів установлена наявність справних жил у кабелі й величини перехідних опорів жил з ушкодженою ізоляцією, то доцільно перевірити наявність обриву жил. Для цього можна вимірити опір жил ланцюга. При нескінченно великому значенні цього опору справедливо припускати обрив жил без ушкодження ізоляції.

Вибір способу вимірів для знаходження місць обриву жил визначається станом ізоляції в місці обриву і наявністю справних жил. Прилад ПКП-ЗМ дозволяє використати для визначення місця обриву жил метод пульсуючого струму та метод порівняння ємностей[3].

4.3 Опис лабораторного обладнання

Лабораторне обладнання складається з макета кабельних кіл та переносного кабельного прибору ПКП-3М. На рис 4.1 та рис. 4.2(а,б) наведено схеми вмиkanня ПКП-3М для визначення відстані до місця пошкодження ізоляції та обриву жил кабелю. При вимірах прибором ПКП-ЗМ балансування мосту проводиться спочатку при натиснутій кнопці «Грубо», а потім при натиснутій кнопці «Точно». Всі з’єднання в схемі проводяться при відключенні живлення прибору.
Рисунок 4.1 – Визначення відстані до місця ушкодження ізоляції

а)

б)

а) метод пульсуючого струму; б) метод порівняння ємностей;

Рисунок 4.2 – Визначення відстані до місця обриву жил:
4.4 Порядок виконання роботи й методичні вказівки по її виконанню

4.4.1 Порядок виконання роботи

1. Виміряти перехідні опори для жил кабелю ТГ.
2. Визначити відстань до місць ушкодження ізоляції кабелю ТГ методом простої петлі.
3. Визначити відстань до місць ушкодження ізоляції кабелю ТГ методом подовженої петлі:
 - при великих перехідних опорах;
 - при малих перехідних опорах.
4. Визначити відстань до місця обриву жил кабелю МКС пультуючим струмом.
5. Визначити відстань до місця обриву жил кабелю МКС методом порівняння ємностей.

4.4.2 Визначення місця ушкодження ізоляції методом простої петлі (метод Муррея)

Цей метод застосовується для визначення відстані до місця ушкодження ізоляції жил при наявності справної жили й перехідному опорі ізоляції в місці ушкодження жили до 10 МОм.

Підключити вимірювані жили до клем Л1, Л2. На протилежному кінці жили закоротити. Заземлити клему 3 на приладі. Перемикач І встановити в положення МІ, перемикач ІІІ у вимірах не бере участь.

Ввімкнути живлення. Коректорами встановити світловий показник мікроамперметра на оцінку «0» шкали ємності. Натиснути кнопку «Грубо». Установити світловий показник на оцінку «0» обертанням ручок перемикачів декад опорів. Остаточне балансування моста зробити при натиснутій кнопці «Точно».

Відстань до місця ушкодження ізоляції визначається за формуллю:

\[l_o = l \cdot \frac{2 \cdot R_M}{990 + R_M}, \]
де \(l \) – довжина справної жили кабелю, км;

\(R_M \) – відлік за показниками перемикачів декад опорів у момент рівноваги моста, Ом.

4.4.3 Визначення місця ушкодження ізоляції методом подовженій петлі при великих опорах (метод Варлея)

Метод застосовується при наявності справної жили, рівною за опором ушкодженій (до ушкодження) і при перехідному опору ізоляції від 10 кОм до 10 МОм.

Підключити вимірювані жили до клем Л1 та Л2, на протилежному кінці жили закоротити. Заземлити клему 3. Перемикач І встановити в положення МІ.

Ввімкнути живлення. Коректором установити світловий показник мікроамперметра на оцінку «0» шкали ємності.

Відстань до місця ушкодження ізоляції визначається двома вимірами.

Перший вимір виконується при установці перемикача ІІ у положення ШІІІ (шлейф). Перемикач ІІІ установити на множник відповідно до очікуваної величини опору шлейфу. Натиснути кнопку «Грубо». Обертанням ручок перемикачів декад опорів установити світловий показник на «0». Остаточне балансування моста зробити при натиснутій кнопці «Точно». Величина опору \(R_шл \) читається на перемикачах декад магазину опорів з урахуванням установленого множника на перемикачі ІІІ, тобто \(R_шл = n \cdot R_M \), де \(n \) – множник відносини плечей, \(R_M \) – відлік за показниками перемикачів декад опорів у момент рівноваги моста, Ом.

Другий вимір виконується при установці перемикача ІІ у положення Д (подвійний міст). Обертанням ручок перемикачів декад опорів і підбором положення перемикача ІІІ зробити балансування моста спочатку при кнопці «Грубо», потім «Точно».

При неможливості балансування моста встановити перемикач І у положення М2.

Відстань до місця ушкодження визначається за формулою:

\[
l_x = \frac{R_{o \dot{e}} - n \cdot R_M}{R_{o \dot{e}} \cdot (1 + n) \cdot 2l},
\]
де \(R_{шл} \) — раніше обмірюваний опір шлейфу, Ом;

\(n \) — множник відношення плечей (положення перемикача III);

\(R_M \) — відлік за показниками перемикачів декад опорів у момент рівноваги моста, Ом;

\(l \) — довжина неушкодженої жили, м.

4.4.4 Визначення місця ушкодження ізоляції методом подовженої петлі при малому перехідному опорі

Метод застосовується при наявності неушкодженої жили, опір якої дорівнює опору пошкодженої (до ушкодження) та при перехідному опорі у місці ушкодження не більше 10 кОм.

Підключити вимірювані жили до клем Л1 і Л2, на протилежному кінці жили закоротити. Заземлити клему 3 на приладі. Перемикач І установити в положення МІ. Ввімкнути живлення. Установити коректором світловий покажчик мікроамперметра на оцинку «0» шкали ємностей.

Відстань до місця ушкодження визначається двома вимірами.

У першому вимірі виконується вимір опору шлейфу \(R_шл \) за методикою п.4.4.3.

Другий вимір виконується при установці перемикача II у положення A (асиметрія). Перемикач III установити в положення І. Зробити балансування моста перемикачами декад опорів спочатку при натиснутій кнопці «Грубо», потім — «Точно».

Відстань \(l_x \) до місця ушкодження визначається за формулою:

\[
l_x = \frac{R_о \cdot \bar{e} - R_M}{R_о \cdot \bar{e}} \cdot l,
\]

de \(R_{шл} \) — обмірюваний опір шлейфу, Ом;

\(R_M \) — відлік за показниками перемикачів декад опорів у момент рівноваги моста при другому вимірі, Ом;

\(l \) — довжина шлейфу.
4.4.5 Визначення місця обриву жил пульсуючим струмом

Мостовий метод (на пульсуючому струмі) застосовується при неушкодженні ізоляції жил у місці обриву й при наявності цілої жили.

Підключити вимірювані жили до клем Л1 та Л2, на протилежному кінці жили закоротити. Заземлити клему 3 на приладі. Перемикач I установити в положення МІ, перемикач II в положення І (імпульс). Перемикач III участь у вимірах не бере.

Ввімкнути живлення. Коректором установити світловий покажчик мікроамперметра на оцінку «0» шкали ємності. Посиляючи імпульси в лінію натисканням, і відпусканням кнопки «ИМПУЛЬС», установити світловий покажчик на оцінку «0» обертанням ручок перемикачів декад опорів спочатку при натиснутій кнопці «Грубо», потім – при натиснутій кнопці «Точно».

При неможливості балансування моста встановити перемикач I у положення М2.

Відстань l_x до місця обриву жил визначається за формулою:

$$l_x = \frac{2 \cdot R_M}{990 + R_M},$$

де R_M – відлік за показниками перемикачів декад опорів у момент рівноваги моста, Ом;

l – довжина шлейфу.

4.4.6 Визначення місця обриву жил методом порівняння ємностей

Метод заснований на тому, що при однорідній конструкції кабелю ємність жили пропорційна її довжині. Для визначення відстані до місця обриву жил необхідно виміряти ємність цілої жили та ємність ушкодженої жили. Відстань l_x до місця обриву жил визначається за формулою:

$$l_x = \frac{C_x}{C_l} \cdot l,$$
де C_x – ємність ушкодженої жили, мкФ;
C_s – ємність справної жили, мкФ;
l – довжина справної жили, км.

Ввімкнути живлення. Коректором установити світловий покажчик мікроамперметра на оцінку «0» шкали ємностей. Перемикач ІІ установити у положення 3 (ємність), перемикач ІІІ – у положення 0,01. Натиснути одночасно кнопки «Точно» й «Калибровка 3». Обертанням ручки «Калибровка 3» установити світловий покажчик на оцінку 0,5 шкали «μF». Вимкнути живлення.

Підключити вимірювані жили до клем Л1 та Л2, на протилежному кінці ізолювати. Заземлити клему 3 на приладі. Установити перемикач ІІІ у положення І.

Зробити виміри ємності справної та несправної жил, ставлячи перемикач І послідовно в положення Л1-3 та Л2-3.

Відлік вимірюваної ємності виконується при натиснутій кнопці «Точно» за шкалою «μF». Якщо світловий покажчик відхиляється незначно, перемикач ІІІ установити в положення 0,1; 0,01 для установки світлового покажчика в зручному для відліку місці шкали. Величину вимірюваної ємності прочитати за шкалою «μF» з урахуванням множника, установленого на перемикачі ІІІ.

4.5 Зміст звіту

У звіті повинні бути наведені:
– схеми кабельних кіл;
– схема вимірів для різних видів ушкоджень кабельного ланцюга;
– дані вимірів перехідних опорів для кабелю ТГ;
– дані вимірів відстаней до місця обриву жили кабелю МКС, отримані різними методами;
– висновки в порівнянні результатів вимірів, отриманих різними методами.

Результати вимірів та розрахунків звести у вигляді таблиць (табл. 4.1 й 4.2)
Таблиця 4.1 – Визначення відстані до місця ушкодження ізоляції

<table>
<thead>
<tr>
<th>Пари, жила</th>
<th>1а</th>
<th>1б</th>
<th>2а</th>
<th>2б</th>
<th>3а</th>
<th>3б</th>
<th>4а</th>
<th>4б</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{пар}$</td>
<td>R_n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1й метод</td>
<td>R_M</td>
<td>$R_{шл}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2й метод</td>
<td>R_M</td>
<td>$R_{шл}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3й метод</td>
<td>R_M</td>
<td>$R_{шл}$</td>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 4.2 – Визначення відстані до місця обриву жил

<table>
<thead>
<tr>
<th>Номера жил</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{шл}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_{раб}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.6 Контрольні питання

1. Що називається перехідним опором?
2. Як виміряти перехідні опори?
3. Фактори, що визначають вибір способу знаходження відстані до місця ушкодження кабельного ланцюга.
4. Метод і схема визначення місця ушкодження ізоляції методом простої петлі.
5. Метод і схема визначення місця ушкодженої ізоляції методом подовженої петлі при більших перехідних опорах.
6. Метод і схема визначення місця ушкодження ізоляції методом подовженої петлі при малих перехідних опорах.
7. Метод і схема визначення місця обриву жил пульсуючим струмом.
8. Метод і схема визначення місця обриву жил методом порівняння ємностей.
9. В чому полягають особливості застосування пульсуючого струму при визначення місця обриву жил кабеля?

10. При яких умовах можна застосовувати метод порівняння ємностей при визначенні місця обриву жил?
ЛІТЕРАТУРА

